MTH 304: Metric Spaces and Topology Homework III

(Due 06/02)

1. For $n \ge 1$, let

$$P_n: S^n \setminus \{x\} \to \mathbb{R}^n$$

be the stereographic projection.

- (a) Derive an explicit expression for P_n , assuming that x is the north pole.
- (b) Show that P_n is a homeomorphism, and hence $S^n \setminus \{x\} \approx \mathbb{R}^n$.
- 2. From real analysis, you know that $f : \mathbb{R} \to \mathbb{R}$ is continuous if for given $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) f(a)| < \epsilon$, whenever $|x a| < \delta$. Show that this is equivalent to the topological formulation of continuity in this setting.
- 3. Let B(x,r) be an open ball in \mathbb{R}^n with center x and radius r > 0. Show that

$$B(x,r) \approx \mathbb{R}^n.$$

- 4. Let X be a topological space, and $f, g: X \to \mathbb{R}$ be continuous maps.
 - (a) Show that $\{x \mid f(x) \leq g(x)\}$ is closed in X.
 - (b) Show that $h = \min(f, g)$ is continuous. [Hint: Use the pasting lemma.]
- 5. Will the pasting lemma (see Lesson plan 1.7 (xiv)) hold true if we assume that A and B are open sets? Why or why not?
- 6. An indexed family $\{A_{\alpha}\}_{\alpha \in J}$ of subsets of topological space (X, \mathcal{T}_X) is said to be *locally finite* if each $x \in X$ has a neighborhood U such that

$$|\{\alpha \in J \mid U \cap A_{\alpha} \neq \emptyset\}| < \infty.$$

Let $\{A_{\alpha}\}_{\alpha \in J}$ be a locally finite family of subsets in X such that $X = \bigcup_{\alpha \in J} A_{\alpha}$. If $f: X \to Y$ is a map such that for each α , A_{α} is closed and $f|_{A_{\alpha}}$ is continuous, then show that f is continuous.

7. Let $A \subset X$, Y a Hausdorff space, and $f : A \to Y$ be continuous. If f can be extended to a continuous function $g : \overline{A} \to Y$, then show that g is uniquely determined by f.