MTH 304: Metric Spaces and Topology Homework III

(Due 06/02)

1. For $n \geq 1$, let

$$
P_{n}: S^{n} \backslash\{x\} \rightarrow \mathbb{R}^{n}
$$

be the stereographic projection.
(a) Derive an explicit expression for P_{n}, assuming that x is the north pole.
(b) Show that P_{n} is a homeomorphism, and hence $S^{n} \backslash\{x\} \approx \mathbb{R}^{n}$.
2. From real analysis, you know that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if for given $\epsilon>0$, there exists $\delta>0$ such that $|f(x)-f(a)|<\epsilon$, whenever $|x-a|<\delta$. Show that this is equivalent to the topological formulation of continuity in this setting.
3. Let $B(x, r)$ be an open ball in \mathbb{R}^{n} with center x and radius $r>0$. Show that

$$
B(x, r) \approx \mathbb{R}^{n} .
$$

4. Let X be a topological space, and $f, g: X \rightarrow \mathbb{R}$ be continuous maps.
(a) Show that $\{x \mid f(x) \leq g(x)\}$ is closed in X.
(b) Show that $h=\min (f, g)$ is continuous. [Hint: Use the pasting lemma.]
5. Will the pasting lemma (see Lesson plan 1.7 (xiv)) hold true if we assume that A and B are open sets? Why or why not?
6. An indexed family $\left\{A_{\alpha}\right\}_{\alpha \in J}$ of subsets of topological space $\left(X, \mathcal{T}_{X}\right)$ is said to be locally finite if each $x \in X$ has a neighborhood U such that

$$
\left|\left\{\alpha \in J \mid U \cap A_{\alpha} \neq \emptyset\right\}\right|<\infty .
$$

Let $\left\{A_{\alpha}\right\}_{\alpha \in J}$ be a locally finite family of subsets in X such that $X=\cup_{\alpha \in J} A_{\alpha}$. If $f: X \rightarrow Y$ is a map such that for each α, A_{α} is closed and $\left.f\right|_{A_{\alpha}}$ is continuous, then show that f is continuous.
7. Let $A \subset X, Y$ a Hausdorff space, and $f: A \rightarrow Y$ be continuous. If f can be extended to a continuous function $g: \bar{A} \rightarrow Y$, then show that g is uniquely determined by f.

